欢迎访问北京中教金源科技有限公司

咨询热线:010-63716865

  当前位置 : 首页 > 资讯动态 > 相关技术 > 光电催化水分解原理
点击返回新闻列表  
光电催化水分解原理
发布时间:2023-02-06    浏览量:2420

在国家自然科学基金“人工光合成”基础科学中心项目(批准号:22088102)等资助下,中国科学院大连化学物理研究所李灿院士团队成功实现了高效光电催化全分解水过程,分解水制氢效率达到4.3%,是目前文献最好结果。研究成果以“多媒介调控的无偏压光电催化全解水制氢效率超过4%,于2021年8月11日在线发表于《美国化学会志》上。

  光电催化全分解水制氢是将太阳光和水转化为化学燃料的有效方法,通过在空间和功能上解耦两个光电极(光阳极和光阴极)的光吸收和催化功能,从而更高效地利用太阳光,同时避免了外加偏压和牺牲试剂的使用。从原理上来说,这种结构类似于自然光合作用体系(光系统II和光系统I)提供水氧化和生产太阳能燃料的Z机制构型。如果能利用太阳能实现高效的光电催化全分解水制氢,改变能源和化工产业对化石资源的过度依赖,有助于解决气候危机、能源安全等问题,实现经济和地球生态可持续发展。


  研究团队前期通过模拟光系统II中关键组分的重要功能,构筑了高效的光电催化水氧化体系此工作基于自然光合作用的原理,成功实现了由自然光合作用Z机制启发的高效光电催化全分解水过程。通过将无机氧化物基光阳极,有机聚合物基光阴极与多个电荷传输媒介相耦合,组装了一个高效的无偏压全分解水光电化学池。该体系具有如下特性:

(1)有机聚合物的离散能级特性使得有机光阴极和无机光阳极的光谱吸收具有较好的互补性,极大地提高了太阳能的利用率;

(2)在捕光材料和电子受体/供体之间构建了一个包含多个电荷传输媒介的仿生电荷转移链。在电化学电位梯度的驱动下,光生电子通过这些电荷传输媒介有效转移,提高了电荷传输速率并降低了电荷复合速率,从而实现高效的电荷分离和传输,太阳能-氢气转换效率达到4.3%。


  该研究通过使用具有匹配能级的多媒介调控的仿生策略,为高效人工光合体系的合理设计和组装提供了新颖的思路和有效的方法。

 如果您想了解更多关于【光电催化水分解原理】,可以联系我们的在线客服为您详细解答。


最新文章
催化剂评价装置:解锁催化材料性能的核心工具 —— 从原理、结构到应用的深度解析
在化学化工、能源环保等领域,催化剂的性能直接决定反应效率与产物质量,而催化剂评价装置作为 “催化剂的体检中心”,是连接材料研发与工业应用的关键桥梁。本文将从技术原理、核心组件、分类应用及发展趋势等维度,系统解读这一精密设备的核心价值。
中教金源实验室光源:科学探索的 “眼睛”—— 从功能选型到智能运维的全维度解析
在实验室精密的科研工作中,光源不仅是基础照明设备,更是决定实验数据准确性与操作安全性的关键因素。不同类型的实验对光的照度、色温、光谱特性乃至稳定性都有独特需求,正如显微镜需要特定光源观察样本,光谱分析依赖精准波长的激发光。本文将从实验室光源的分类特性、选型逻辑及运维要点出发,解析这一 “科研基础设施” 的核心价值。
高温固体氧化物反应测试系统:开启能源转化与催化研究的智能化新维度 —— 解析 CEL-SOFC-SOEC 的核心技术与应用价值
在全球能源转型加速的背景下,高效实现化学能与电能的双向转化成为科研与工业领域的核心课题。作为能源材料测试设备的创新者,奥莱特(Aulight)推出的CEL-SOFC-SOEC 高温固体氧化物反应测试系统,以其独特的双向能量转化能力与模块化智能设计,为固体氧化物燃料电池(SOFC)与电解池(SOEC)的研究提供了全场景解决方案。本文将从技术特性、功能优势及应用前景等维度,深度解读这一前沿设备的核心价值。
2022-2025@北京中教金源科技有限公司 版权所有 京公安网备11010602007561        京ICP备10039872-1号

服务热线

010-63716865

扫一扫,了解更多