咨询热线:010-63716865

  当前位置 : 首页 > 资讯动态 > 相关技术 > 光电催化水分解原理
点击返回新闻列表  
光电催化水分解原理
发布时间:2023-02-06    浏览量:2474

在国家自然科学基金“人工光合成”基础科学中心项目(批准号:22088102)等资助下,中国科学院大连化学物理研究所李灿院士团队成功实现了高效光电催化全分解水过程,分解水制氢效率达到4.3%,是目前文献最好结果。研究成果以“多媒介调控的无偏压光电催化全解水制氢效率超过4%,于2021年8月11日在线发表于《美国化学会志》上。

  光电催化全分解水制氢是将太阳光和水转化为化学燃料的有效方法,通过在空间和功能上解耦两个光电极(光阳极和光阴极)的光吸收和催化功能,从而更高效地利用太阳光,同时避免了外加偏压和牺牲试剂的使用。从原理上来说,这种结构类似于自然光合作用体系(光系统II和光系统I)提供水氧化和生产太阳能燃料的Z机制构型。如果能利用太阳能实现高效的光电催化全分解水制氢,改变能源和化工产业对化石资源的过度依赖,有助于解决气候危机、能源安全等问题,实现经济和地球生态可持续发展。


  研究团队前期通过模拟光系统II中关键组分的重要功能,构筑了高效的光电催化水氧化体系此工作基于自然光合作用的原理,成功实现了由自然光合作用Z机制启发的高效光电催化全分解水过程。通过将无机氧化物基光阳极,有机聚合物基光阴极与多个电荷传输媒介相耦合,组装了一个高效的无偏压全分解水光电化学池。该体系具有如下特性:

(1)有机聚合物的离散能级特性使得有机光阴极和无机光阳极的光谱吸收具有较好的互补性,极大地提高了太阳能的利用率;

(2)在捕光材料和电子受体/供体之间构建了一个包含多个电荷传输媒介的仿生电荷转移链。在电化学电位梯度的驱动下,光生电子通过这些电荷传输媒介有效转移,提高了电荷传输速率并降低了电荷复合速率,从而实现高效的电荷分离和传输,太阳能-氢气转换效率达到4.3%。


  该研究通过使用具有匹配能级的多媒介调控的仿生策略,为高效人工光合体系的合理设计和组装提供了新颖的思路和有效的方法。

 如果您想了解更多关于【光电催化水分解原理】,可以联系我们的在线客服为您详细解答。


最新文章
稳态表面光电压测试系统:精准表征材料界面电荷行为的科研利器
稳态表面光电压测试系统是研究半导体材料、光催化剂及光伏器件界面电荷分离与传输机制的核心分析工具,其测量精度直接决定材料表面电势分布的解析能力。针对传统表征手段存在的灵敏度不足、空间分辨率低及环境条件单一等痛点,新一代稳态表面光电压系统通过锁相放大技术、微区扫描成像模块及多物理场耦合设计,实现了从静态表面电势分布到动态光响应特性的全方位分析。本文深度解析系统在钙钛矿太阳能电池缺陷定位、光催化活性位点筛选及二维材料界面电荷转移研究中的创新应用,结合关键参数与实验案例,为材料表界面科学研究提供精准解决方案。
光催化反应装置:解锁清洁能源与环境治理的科研基石
光催化反应装置是推动光解水制氢、CO₂资源化利用及污染物高效降解等前沿研究的核心实验平台,其性能直接决定催化材料筛选效率与反应机理研究的可靠性。针对传统设备存在的光源稳定性不足、数据采集滞后及多技术路线兼容性差等痛点,新一代模块化光催化反应系统通过全光谱动态光源技术、智能实时监测架构与多相反应协同设计,实现了从催化剂活性评估到工业级条件模拟的全流程精准控制。本文深度解析系统在光催化制氢、二氧化碳还原及有机污染物降解等场景的创新应用,结合核心参数与实验数据,为科研人员提供科学选型与优化策略。
瞬态表面光电压测试系统:揭示光生载流子动力学的精密利器
瞬态表面光电压测试系统是研究光催化材料、太阳能电池及半导体器件中光生载流子迁移与复合动力学的核心表征工具,其测量精度直接决定材料界面电荷分离效率的评估准确性。针对传统测试方法存在的时间分辨率不足、空间灵敏度低及多物理场耦合缺失等痛点,新一代瞬态表面光电压系统通过超快激光激发技术、微区扫描成像模块及多模态原位联用接口,实现了从皮秒级载流子寿命解析到微米级空间电荷分布可视化的全维度分析。
2022-2025@北京中教金源科技有限公司 版权所有 京公安网备11010602007561        京ICP备10039872-1号

服务热线

010-63716865

扫一扫,了解更多

在线咨询
在线客服1
请您留言

感谢您的关注,当前客服人员不在线,请填写一下您的信息,我们会尽快和您联系。

提交