咨询热线:010-63716865

  当前位置 : 首页 > 资讯动态 > 相关技术 > 光化学研究历史和特点
点击返回新闻列表  
光化学研究历史和特点
发布时间:2018-11-06    浏览量:5185

光化学(photochemistry)属于化学领域,它的任务是研究光和物质相互作用所引起的物理变化和化学变化,涉及由可见光和紫外光所引起的所有化学反应。

 

光化学研究历史

  30年代以前光化学是零散 不成系统的
  50年代 建立了光化学的定则:原子轨道理论,分子轨道理论,前线轨道理论产生→光化学定则:Stank-Einstein定律,Franck-Condon原理,自旋选择定则,Kasha规则等
  80年代飞秒,皮秒,脉冲光源, 脉冲激光技术 
  激光闪光光解技术——超快反应理解、分子动态过程的理解
  光化学建立在分子水平上——现代光化学
  20世纪末——以无机材料为主
  近十年——有机材料化学飞速发展
 

光化学特点

  目前光化学所涉及光的波长范围为100~1000nm即紫外至近红外波段。比紫外波长更短的电磁辐射(X射线和射线),所引起的光电离和化学变化属于辐射化学(radiochemistry)的范畴。而远红外波段的或波长更长的电磁波,其光子能量不足以引起化学变化,因此不属于光化学研究的范畴。一般来说,光化学有效的光的波长范围为100-1000nm,但由于受光窗材料和化学键能的限制,光化学中通常适用的光的波长范围为200-700nm,其中200nm是石英光窗材料的透射限。
 
  光化学反应中,分子吸收的光子所具有的能量与化学反应中分子的能量变化相匹配才能引起化学变化。光化学中适用的光,其具有的能量应足以使化学键断裂,此能量对应相应波长范围。
 

光化学与热化学反应区别

  光化学反应的活化主要是通过分子吸收一定波长的光来实现的,而热化学反应的活化主要是分子从环境中吸收热能而实现的。光化学反应受温度的影响小,有些反应可在接近0K时发生。
  光活化分子与热活化分子的电子分布及构型有很大不同,光激发态的分子实际上是基态分子的电子异构体。

  被光激发的分子具有较高的能量,可以得到高内能的产物,如自由基、双自由基等。


最新文章
光催化降解污染物:绿色环境治理的技术革新
光催化降解污染物技术通过半导体材料在光照下产生的活性自由基(如·OH、O₂⁻),将有机污染物高效矿化为CO₂和H₂O,是应对工业废水、VOCs(挥发性有机物)及新兴污染物治理的核心解决方案。针对传统处理技术存在的能耗高、二次污染风险及难降解物质处理效率低等痛点,新一代光催化系统通过宽光谱激发技术、智能在线监测模块及多相反应协同设计,实现了从实验室研究到工业级应用的全流程精准控制。本文深度解析光催化降解污染物的技术原理、设备方案与典型应用场景,结合中教金源光催化实验系统,为环境治理研究提供科学指导。
太阳能光催化水制氢技术解析:原理、设备与未来趋势|中教金源
解析太阳能光催化水制氢技术原理与核心设备,涵盖光催化剂筛选、反应系统集成及效率优化方案,结合中教金源氙灯光源、在线质谱仪及高压反应釜等产品,为科研与工业用户提供从实验室到规模化应用的技术指南。
紫外区单波长滤光片:精准光谱调控的科研基石
紫外区单波长滤光片是光谱分析、光催化研究及光化学实验中的核心光学元件,通过选择性透过特定波长紫外光(如254nm、365nm等),为科研提供精准的光谱调控能力。这类滤光片在光解水制氢、污染物降解、光敏材料表征等领域发挥关键作用,但其性能受透过率精度、热稳定性及抗损伤阈值等参数直接影响实验结果可靠性。
2022-2025@北京中教金源科技有限公司 版权所有 京公安网备11010602007561        京ICP备10039872-1号

服务热线

010-63716865

扫一扫,了解更多

在线咨询
在线客服1